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In recent years, bilayer graphene has attracted theoretical attention due 
to its extraordinary electronic properties. In particular, it has been recent-
ly predicted [1] and experimentally demonstrated [2] that bilayer 
graphene under an electric potential that changes sign at an interface in-
duces exponentially localized chiral edge states. These edge states are 
robust against perturbation due to the topological properties of the 2D 
bulk. We confirm these results using the tight-binding model on a cylin-
drical geometry with periodic boundary conditions and obtain analytical 
solutions of the wavefunction using k·p expansion about the Dirac 
points. By applying an additional uniform magnetic field to this system, 
we show that the edge states deviate from the interface.
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Continuum limit
The Hamiltonian

describes the first-order expansion at the K point in the Brillouin zone. We 
set V(x) = V

0 
sgn(x)/2 in our calculations. The zero-energy eigenstates that 

solve this system are found to satisfy

Strong electric and magnetic fields
Finally, we add back the electric field so that both fields are perpendicular 
to the bilayer graphene sheet (Figure 8). The magnetic field strength 
takes on the form

where p/q denotes the filling fraction of the magnetic flux quantum φ
0 

through a single hexagon plaquette. In general, there will be a delta mag-
netic flux spike at one interface, but we take advantage of the cylindrical 
geometry to isolate edge states on the interface with uniform flux. 

Tight-binding: cylindrical geometry
The AB-stacked bilayer graphene has a tight-binding Hamiltonian of the 
form

We neglect spin, next-nearest neighbor hopping, and other weaker tun-
neling processes. The energy dispersion is quadratic at the K and K’ points 
(Figure 3), which is then gapped out in the presence of a perpendicular 
electric field. Applying an alternating electric field breaks translational 
symmetry in one direction. To avoid localized states in a ribbon geome-
try, we employ periodic boundary conditions. The resulting cylinder has 
two interfaces where the electric potential changes sign and where edge 
states are localized (Figure 4). To minimize finite size effects, our calcula-
tions use a sufficiently large unit cell.

Figure 1 (left). AB stacked bilayer graphene. [3] γ
0
 = 3.16 eV, γ

1
 = 0.381 eV, a = 2.46 Å. [4] Figure 2 (right). Cy-

lindrical geometry, showing the two conducting channels where counterpropagating modes are localized. 

Figure 3 (left). Energy dispersion of bilayer graphene about the high symmetry points in the Brillouin zone, 
showing quadratic band touching at the K point. Figure 4 (right). Energy dispersion (eV vs. Å-1) of the edge 

states in the lattice model at the K point at V
0
 = 1. The counterpropagating modes reside on different interfaces. 

Figure 5. Wavefunction components for V
0
 = 1. Blue (orange) denotes the real (imaginary) part. The 

second and third components have overlapping real and imaginary parts.

Conclusion
We have shown the existence of exponentially localized chiral edge 
states using both the lattice and continuum models. We were able to iso-
late those edge states that reside on the interface located far away from 
the delta magnetic flux spike. The characteristic width and mean abso-
lute deviation from the interface were found as a function of electric and 
magnetic field strength. These parameters are important for quantum 
transport systems [6] that may be used to engineer ultra low-power elec-
tronics.

Figure 6 (left). Comparison of |ψ|2  between lattice (gray) and continuum (blue) models at V
0
 = 1. Figure 7 

(right). Width of |ψ|2  (Å) as a function of potential strength (eV) for probability cutoffs of 0.5 (blue), 0.75 (or-
ange), 0.95 (green), and 0.99 (red), with tight-binding calculations superimposed for 0.5 < V

0
 < 2.  

V > 0

V < 0

Figure 10 (left). Mean absolute deviation of |ψ|2 as a function of field strength (T) at V
0
 = 0.3 (blue), 0.5 (or-

ange), and 1 (green). Figure 11 (right). Deviating |ψ|2 at V
0
 = 0.3 for B = 0 (blue), 24 (orange), and 32 (green).

Figure 8 (left). Bilayer graphene with an electric field that changes sign at an interface and a uniform mag-
netic field. [5] Both fields are perpendicular to the plane of the bilayer. Figure 9 (right). Energy dispersion of 

the edge states at V
0
 = 0.3 for B = 0 (blue) and B = 24 (orange), showing the shifting K point.

Landau levels
Bilayer graphene possesses a Landau quantization under the presence of 
a strong magnetic field. Focusing on the low-lying energy spectrum, we 
realize a two-band effective Hamiltonian

and assume that the wavefunctions are shifted harmonic oscillator ei-
genstates

With appropriate use of ladder operators, we rederived the spectrum
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