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Parity Conservation in Nature 

For most of your undergraduate studies, 
you will learn physics from textbooks 
that pretend (at least: most of the time) 
we know everything. 
We do not. E.g.: Why do we have parity 
violation? What is parity violation? 

If you get a movie of both billiard tables, can you tell which one is the one in the mirror? 
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Parity Violation in nature could be by convention 

Mechanics: 

Parity violation by 

convention 

Chemistry / biology: 

Parity of in amino acids 

Problem: chemical 

properties of enantiomeres 

mostly identical, still we 

have preferred chirality for 

sugars and amino acids in 

biological systems. The 

cause is not known; it could 

be fundamental or by 

convention. 
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Process: 
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Parity Violation in nature in laws of physics 

This kind of parity violation is 
fundamental. There are no 
other Co-60 atoms that 
behave differently. And there 
is no known process like 
evolution that could have 
selected one type of Co-60 
atoms over the other. 

60Co 

e- 

 𝜈 𝑒 

Process: 
     60𝐶𝑜 → 60𝑁𝑖 + 𝑒− + 𝜈𝑒 
 
Beta decay violates parity 
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This is why you study kinematics with 

billiard balls in PHYS1710 right now!  



The Spallation Neutron Source SNS in Oak Ridge, TN 
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Neutron production in a spallation source 

Neutron moderation 

Production of free neutrons 
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One-minute phenomenology of Cold Neutrons 
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Interaction potential between low energy neutrons and matter 

(that is: The nuclei in matter): 
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n = h m v r x1 x2 … 



V 

One-minute phenomenology of Cold Neutrons 

2

Fermi nucleon

nuclein

2
( )iV b x x

m


 

Interaction potential between low energy neutrons and matter 

(that is: The nuclei in matter): 

Neutrons have a size (de Broglie wavelength): 

n = h m v r x1 x2 … 



V 

2

Fermi

n

2
~ ~ 100 n >>Å e  V: V nb

m




One-minute phenomenology of Cold Neutrons 

2

Fermi nucleon

nuclein

2
( )iV b x x

m


 

Interaction potential between low energy neutrons and matter 

(that is: The nuclei in matter): 

Neutrons have a size (de Broglie wavelength): 

n = h m v r x1 x2 … 

If they are slow enough: 



V 

2

Fermi

n

2
~ ~ 100 n >>Å e  V: V nb

m




One-minute phenomenology of Cold Neutrons 

2

Fermi nucleon

nuclein

2
( )iV b x x

m


 

Interaction potential between low energy neutrons and matter 

(that is: The nuclei in matter): 

Neutrons have a size (de Broglie wavelength): 

n = h m v r x1 x2 … 

If they are slow enough: 

Consequence: If neutrons hit surface under a small angle, they bounce back  



V 

2

Fermi

n

2
~ ~ 100 n >>Å e  V: V nb

m




One-minute phenomenology of Cold Neutrons 

2

Fermi nucleon

nuclein

2
( )iV b x x

m


 

Interaction potential between low energy neutrons and matter 

(that is: The nuclei in matter): 

Neutrons have a size (de Broglie wavelength): 

n = h m v r x1 x2 … 

If they are slow enough: 

Consequence: If neutrons hit surface under a small angle, they bounce back  

neutron 



Nab setup at Spallation Neutron Source (SNS) 

Spectrometer magnet 

Si detectors 

Cold neutron beam 
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FNPB beamline @ SNS 

8 m 
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Proton source for detector tests (and lab) 

Commissioning results: 

Proton source and detector team: 

A. Ross (Mitchell fellowship), R. Slater, Z. Tompkins, A. Salas Bacci, P. Zotev, D. Pocanic, N. Roane, C.J. Whittaker, D. 

Warner, P. Carr, Sh. Zamperini, A. Smith, M. Doyle, C. Ries, A. Bryant, S.B. (all UVa) 

M. Schlegel, J.-P. Burchert, F. Anastasopoulus (DAAD fellowships) 

Electrode team )not discussed): 

R. Hodges, H. Bonner, S. McGovern, Ch. Tong, B. Farrar, A. Smith, D. v.Petten, R. Mulherin, M. Allison, H. Li, J. Clement 

(all UVa), G. Konrad (TU Wien) 

Simulations and Spectrometer design: 

J. Brown, T. Niu, N. Roane, E. Frlez, P. Alonzi, D. McLaughlin, H. W. Fan, H. Li, E. Stevens, C. Lu, D. Pocanic, S.B.  

Stability of count rate: 170 +- 360 ppm/hour 
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Precision experiments in my lab: 

• Neutron beta decay 

• Gravitationally bound quantum states of neutrons 



The neutron source of the ILL / Grenoble 

Institut Laue-Langevin (neutrons) 

European Synchrotron Radiation Facility 

The neutron source of the ILL Grenoble/France 
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Interaction potential between low energy neutrons and matter 

(that is: The nuclei in matter): 

Main usage: Precision measurements for  fundamental 
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• Neutron beta decay 
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Gravitationally bound quantum states 

proton 

Sun 

Mercury 

Venus 
  

Earth 

Moon 

Mars 

neutron 

electron 

• Electrons in an atom tend to be found in the lowest accessible state. 

→ Relaxation / de-excitation is fast. 

• Planets in the Solar System are in a superposition of quantum states with very high 

quantum numbers. And stay there. 

• If gravity was much stronger, planets on their orbit would loose energy while emitting 

gravitons. 
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Gravitationally Bound states – The idea 
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V.I. Lushikov, 

Physics Today, June 1977 
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Quantum mechanics: Energy of 

neutron is quantized!  
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Motivation: 

Search for new spin-dependent or spin-independent short-range forces (between neutron and 

the mirror and/or scatterer). Dark matter or dark energy models make testable predictions. 
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ΔE ~ h·kHz 
New method: Study transitions between states 



First setup to detect magnetically induced resonance 

transitions in flow-through mode 

New UCN 

Source 

1. Prepare initial state, 

ground state suppressed 

3. Filter ground state 
2. Induce transitions in periodic 

magnetic field gradient 
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Bottom mirror 

1. Prepare initial state (mostly the 3rd), ground state suppressed 

2. Induce Transitions 3→1 in time-dependent magnetic field gradient 

3. Filter ground state  

4. Detect neutrons in dependence of free fall height 

(corresponding to horizontal velocity, corresponding to oscillation frequency) 
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UVa contributions 

Most recent: 

• Spin filter (Louis Lukaczyk, Brianna Hogan*) 

• Film detector for ultracold neutrons (M. Maloney, C. Ries) 

 

*) Undergraduate research prize 

 

 

 

 

 

 

If interested: 

Stefan Baessler 

Physics department, rm 169 

434 243 1024 

Baessler@Virginia.edu 
 


